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Ordinary Matter 
15.5%

Dark Matter 84.5% From Planck 2013
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Ordinary Matter
The ordinary matter has its mass from protons and 
neutrons 

mud, corresponding toMp ≅ 135MeV, are difficult.
They need computationally intensive calculations,
withMp reaching down to 200 MeVor less.

5) Controlled extrapolations to the contin-
uum limit, requiring that the calculations be
performed at no less than three values of the
lattice spacing, in order to guarantee that the
scaling region is reached.

Our analysis includes all five ingredients
listed above, thus providing a calculation of the
light hadron spectrum with fully controlled sys-
tematics as follows.

1) Owing to the key statement from renor-
malization group theory that higher-dimension,
local operators in the action are irrelevant in the
continuum limit, there is, in principle, an un-
limited freedom in choosing a lattice action.
There is no consensus regarding which action
would offer the most cost-effective approach to
the continuum limit and to physical mud. We use
an action that improves both the gauge and
fermionic sectors and heavily suppresses non-
physical, ultraviolet modes (19). We perform a
series of 2 + 1 flavor calculations; that is, we
include degenerate u and d sea quarks and an
additional s sea quark. We fix ms to its approxi-
mate physical value. To interpolate to the phys-
ical value, four of our simulations were repeated
with a slightly different ms. We vary mud in a
range that extends down to Mp ≈ 190 MeV.

2) QCD does not predict hadron masses in
physical units: Only dimensionless combinations
(such as mass ratios) can be calculated. To set the
overall physical scale, any dimensionful observ-
able can be used. However, practical issues in-
fluence this choice. First of all, it should be a
quantity that can be calculated precisely and
whose experimental value is well known. Sec-
ond, it should have a weak dependence on mud,
so that its chiral behavior does not interfere with
that of other observables. Because we are con-
sidering spectral quantities here, these two con-
ditions should guide our choice of the particle
whose mass will set the scale. Furthermore, the
particle should not decay under the strong in-
teraction. On the one hand, the larger the strange
content of the particle, the more precise the mass
determination and the weaker the dependence on
mud. These facts support the use of theW baryon,
the particle with the highest strange content. On
the other hand, the determination of baryon dec-
uplet masses is usually less precise than those of
the octet. This observation would suggest that
the X baryon is appropriate. Because both the
W and X baryon are reasonable choices, we
carry out two analyses, one withMW (theW set)
and one withMX (the X set). We find that for all
three gauge couplings, 6/g2 = 3.3, 3.57, and 3.7,
both quantities give consistent results, namely
a ≈ 0.125, 0.085, and 0.065 fm, respectively. To
fix the bare quark masses, we use the mass ratio
pairs Mp/MW,MK/MW or Mp/MX,MK/MX. We
determine the masses of the baryon octet (N, S,
L, X) and decuplet (D, S*, X*, W) and those
members of the light pseudoscalar (p, K) and

vector meson (r, K*) octets that do not require
the calculation of disconnected propagators.
Typical effective masses are shown in Fig. 1.

3) Shifts in hadron masses due to the finite
size of the lattice are systematic effects. There
are two different effects, and we took both of
them into account. The first type of volume de-
pendence is related to virtual pion exchange be-
tween the different copies of our periodic system,
and it decreases exponentially with Mp L. Using
MpL >

e
4 results in masses which coincide, for

all practical purposes, with the infinite volume
results [see results, for example, for pions (22)
and for baryons (23, 24)]. Nevertheless, for one
of our simulation points, we used several vol-
umes and determined the volume dependence,
which was included as a (negligible) correction at
all points (19). The second type of volume de-
pendence exists only for resonances. The cou-
pling between the resonance state and its decay
products leads to a nontrivial-level structure in
finite volume. Based on (20, 21), we calculated
the corrections necessary to reconstruct the reso-
nance masses from the finite volume ground-
state energy and included them in the analysis
(19).

4) Though important algorithmic develop-
ments have taken place recently [for example

(25, 26) and for our setup (27)], simulating di-
rectly at physical mud in large enough volumes,
which would be an obvious choice, is still ex-
tremely challenging numerically. Thus, the stan-
dard strategy consists of performing calculations
at a number of larger mud and extrapolating the
results to the physical point. To that end, we use
chiral perturbation theory and/or a Taylor expan-
sion around any of our mass points (19).

5) Our three-flavor scaling study (27) showed
that hadron masses deviate from their continuum
values by less than approximately 1% for lattice
spacings up to a ≈ 0.125 fm. Because the sta-
tistical errors of the hadron masses calculated in
the present paper are similar in size, we do not
expect significant scaling violations here. This is
confirmed by Fig. 2. Nevertheless, we quantified
and removed possible discretization errors by a
combined analysis using results obtained at three
lattice spacings (19).

We performed two separate analyses, setting
the scale with MX and MW. The results of these
two sets are summarized in Table 1. The X set is
shown in Fig. 3. With both scale-setting proce-
dures, we find that the masses agree with the
hadron spectrum observed in nature (28).

Thus, our study strongly suggests that QCD
is the theory of the strong interaction, at low

Fig. 3. The light hadron
spectrum of QCD. Hori-
zontal lines and bands are
the experimental values
with their decay widths.
Our results are shown by
solid circles. Vertical error
bars represent our com-
bined statistical (SEM) and
systematic error estimates.
p, K, and X have no error
bars, because they are
used to set the light quark
mass, the strange quark
mass and the overall
scale, respectively.

Table 1. Spectrum results in giga–electron volts. The statistical (SEM) and systematic uncertainties
on the last digits are given in the first and second set of parentheses, respectively. Experimental
masses are isospin-averaged (19). For each of the isospin multiplets considered, this average is
within at most 3.5 MeV of the masses of all of its members. As expected, the octet masses are more
accurate than the decuplet masses, and the larger the strange content, the more precise is the
result. As a consequence, the D mass determination is the least precise.

X Experimental (28) MX (X set) MX (W set)
r 0.775 0.775 (29) (13) 0.778 (30) (33)
K* 0.894 0.906 (14) (4) 0.907 (15) (8)
N 0.939 0.936 (25) (22) 0.953 (29) (19)
L 1.116 1.114 (15) (5) 1.103 (23) (10)
S 1.191 1.169 (18) (15) 1.157 (25) (15)
X 1.318 1.318 1.317 (16) (13)
D 1.232 1.248 (97) (61) 1.234 (82) (81)
S* 1.385 1.427 (46) (35) 1.404 (38) (27)
X* 1.533 1.565 (26) (15) 1.561 (15) (15)
W 1.672 1.676 (20) (15) 1.672

21 NOVEMBER 2008 VOL 322 SCIENCE www.sciencemag.org1226

REPORTS

90% of the mass of ordinary matter emerges from QCD 

Durr, et.al., Science 322, 1224 (2008)
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Introduction of Dark QCD

The dark matter has its mass from a “dark QCD”

A simple-minded conjecture:

Dark QCD

dark quarks, dark pions, 
dark baryons, dark axions	


...
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Is it new?

Volume 165B, number 1,2,3 PHYSICS LETTERS 19 December 1985 

T E C H N O C O S M O L O G Y  - COULD A TECHNIBARYON EXCESS 
PROVIDE A " N A T U R A L "  M I S S I N G  MASS CANDIDATE? 

S. NUSSINOV 
Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, N Y  14853, USA 
and Physics Department, Sackler Faculty of Science, Tel Aviv University, Ramat Aviv, Tel Aviv t, Israel 

Received 7 October 1985 

It is pointed out that if: (a) at least one technibaryon is very stable (~- >/10 20-25 yr) and (b) a technibaryon excess is built up 
at the early stages of the big bang with magnitude comparable to the normal baryonic matter asymmetry c B = CTB then stable 
technibaryons can account for the missing mass and most naturally explain why p B -10-2pcri t. 

1. Introduction. The idea that the W and Z masses 
are induced by spontaneous chiral symmetry breaking 
in a "technicolor" sector [1,2] is extremely appeal- 
ing and has been incorporated into many composite 
[3] or grand unified models [4]. 

In the following we explore some of the conse- 
quence of  a possible techni-matter-anti-matter asym- 
metry which could occur once technicolor models (or 
extended technicolor, etc. models) are incorporated 
into GUTS or appropriate composite models. In par- 
ticular we note that with minimal fine tuning this 
may provide a simple explanation for a puzzling fea- 
ture of the "dark matter". 

The observed total density inferred from rotation 
curves in galaxies, binaries, and cluster motions is 
~.0.2 of Peri~ca 1 = the closure density. This remarkable 
coincidence (P/Per could easily be 10 -80 ) is explain- 
ed in inflationary models predicting I2 = p/per = 1. 

The remaining puzzle which we alluded to is "why 
does normal baryonic matter constitute roughly one 
percent of per? 

Various candidates "x"  have been suggested for 
the missing dark matter: massive neutrinos or pho- 
tinos, axions, heavy relies such as magnetic monopoles, 
shadow universe matter, etc. 

In all cases (with one noteable exception which 
we discuss later), the underlying physics determining 

1 Permanent address, and address after October 30, 1985. 

Px and PB is quite different and it is very hard to un- 
derstand why is I2 B --PB/Pcr ~ PB/Px ~ 10-29" 

In the following we will assume that some varia- 
tion of the GUT's or composite model mechanism 
[5-7]  accounts for the baryon asymmetry e B = nB/ 
n. r ~ (nq - nct)/n.t. 

The baryonic matter density 

O B =eBn. tm B (1) 

depends then on roB, the baryon's mass (which is es- 
sentially given by the QCD scale), and e B which de- 
pends on mGUT/mplanck the ratio of grand unifica- 
tion to Planck scale, the CP violation in the theory, 
and other gauge and/or Higgs couplings. 

If, for example, we assume that Px is due to massive 
neutrinos: 

Px = Pv = n.rmv, (2) 

then Px depends on m v which in turn is determined 
in the usual terminology by various Higgs VEVs and 
couplings and in many models by Majorana masses 
as well. PB/Px = 10-2 implies than eBmB/m v ~. 10 -2 
whereas it would appear that this ratio could easily 
vary over many orders of magnitude. 

Assume, however, the missing dark matter is due 
to a techni-matter excess then 

~2 B = PBlPx = eBmBleTmTB ~ 10-3eB/eT , (3) 

with eTmTB referring to the techni-matter asymme- 

55 

Nuclear Physics B329 (1990) 445-463 
North-Holland 

TECHNICOLOR COSMOLOGY 

R.S. CHIVUKULA 

Department of PItvsics, Boston University, Boston, MA 02215, USA 

Terry P. WALKER 

Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA 

Received 16 June 1989 

We discuss limits on the lightest technibaryons arising in technicolor theories. The electric 
charge, weak isospin, and spin of the lightest technibaryon are calculated for several technicolor 
models and it is shown that, in the popular "one family" models, the lightest technibaryon is 
charged. We then calculate the relic abundance of the lightest technibaryon in the usual manner 
and consider their fate during primordial nucleosynthesis, galaxy formation and in stars. We show 
that stable charged technibaryons (or charged technibaryon-nucleus bound states) would be 
present on earth al levels ruled out by searches for anomalously heavy nuclei. 

1. Introduction 

In technicolor [1] models, chiral symmetry breaking due to a strong technicolor 
gauge interaction is responsible for breaking SU(2)w × U(1)v down to U(1)e m. If 
technicolor is responsible for electroweak symmetry breaking, "technibaryons", the 
technicolor analogs of the proton and neutron, will exist. Technibaryons would have 
been produced in the Big Bang and, if the lifetime is greater than or of order the age 
of the universe, would be present today. In this paper, we consider constraints on 
technicolor theories arising from limits on the existence of supermassive particles. 

In sect. 2, we show that the lightest technibaryon can be charged or neutral and 
that neutral technibaryons may or may not carry weak isospin, depending on the 
technicolor model. In particular, we show that the lightest technibaryon in the 
popular "one family" models are charged and have, for NTc _< 20, charge less than 
10. In sect. 3, we calculate the relic abundance of technibaryons and consider their 
fate during primordial nucleosynthesis, galaxy formation, in stars, and during the 
formation of the solar system. We show that charged technibaryons (or charged 
technibaryon-nucleus bound states) would be present on earth in numbers greater 
than or of order one per 10 7 baryons. 

In sect. 4, we review the terrestrial limits on the existence of supermassive 
particles, and conclude that, in general, any technicolor model in which the lightest 

0550-3213/90/$03.50 "Elsevier Science Publishers B.V. 
(North-Holland) 

asymmetric dark matter

WIMP
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The Discovery of Higgs Boson

Nima Arkani-Hamed, talk at SavasFest, May 2012

Strong dynamics
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∫
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MSUGRA/CMSSM 0 2-6 jets Yes 20.3 m(q̃)=m(g̃ ) ATLAS-CONF-2013-0471.7 TeVq̃, g̃

MSUGRA/CMSSM 1 e,µ 3-6 jets Yes 20.3 any m(q̃) ATLAS-CONF-2013-0621.2 TeVg̃

MSUGRA/CMSSM 0 7-10 jets Yes 20.3 any m(q̃) 1308.18411.1 TeVg̃

q̃q̃, q̃→qχ̃
0
1 0 2-6 jets Yes 20.3 m(χ̃

0
1)=0 GeV ATLAS-CONF-2013-047740 GeVq̃

g̃ g̃ , g̃→qq̄χ̃
0
1 0 2-6 jets Yes 20.3 m(χ̃

0
1)=0 GeV ATLAS-CONF-2013-0471.3 TeVg̃

g̃ g̃ , g̃→qqχ̃
±
1→qqW ±χ̃01 1 e,µ 3-6 jets Yes 20.3 m(χ̃

0
1)<200 GeV, m(χ̃

±
)=0.5(m(χ̃

0
1 )+m(g̃ )) ATLAS-CONF-2013-0621.18 TeVg̃

g̃ g̃ , g̃→qq(ℓℓ/ℓν/νν)χ̃
0
1 2 e,µ 0-3 jets - 20.3 m(χ̃

0
1)=0 GeV ATLAS-CONF-2013-0891.12 TeVg̃

GMSB (ℓ̃ NLSP) 2 e,µ 2-4 jets Yes 4.7 tanβ<15 1208.46881.24 TeVg̃

GMSB (ℓ̃ NLSP) 1-2 τ 0-2 jets Yes 20.7 tanβ >18 ATLAS-CONF-2013-0261.4 TeVg̃

GGM (bino NLSP) 2 γ - Yes 4.8 m(χ̃
0
1)>50 GeV 1209.07531.07 TeVg̃

GGM (wino NLSP) 1 e, µ + γ - Yes 4.8 m(χ̃
0
1)>50 GeV ATLAS-CONF-2012-144619 GeVg̃

GGM (higgsino-bino NLSP) γ 1 b Yes 4.8 m(χ̃
0
1)>220 GeV 1211.1167900 GeVg̃

GGM (higgsino NLSP) 2 e, µ (Z ) 0-3 jets Yes 5.8 m(H̃)>200 GeV ATLAS-CONF-2012-152690 GeVg̃

Gravitino LSP 0 mono-jet Yes 10.5 m(g̃ )>10−4 eV ATLAS-CONF-2012-147645 GeVF1/2 scale

g̃→bb̄χ̃
0
1 0 3 b Yes 20.1 m(χ̃

0
1)<600 GeV ATLAS-CONF-2013-0611.2 TeVg̃

g̃→tt̄ χ̃
0
1 0 7-10 jets Yes 20.3 m(χ̃

0
1) <350 GeV 1308.18411.1 TeVg̃

g̃→tt̄ χ̃
0
1 0-1 e,µ 3 b Yes 20.1 m(χ̃

0
1)<400 GeV ATLAS-CONF-2013-0611.34 TeVg̃

g̃→bt̄ χ̃
+
1 0-1 e,µ 3 b Yes 20.1 m(χ̃

0
1)<300 GeV ATLAS-CONF-2013-0611.3 TeVg̃

b̃1b̃1, b̃1→bχ̃
0
1 0 2 b Yes 20.1 m(χ̃

0
1)<90 GeV 1308.2631100-620 GeVb̃1

b̃1b̃1, b̃1→tχ̃
±
1 2 e,µ (SS) 0-3 b Yes 20.7 m(χ̃

±
1 )=2 m(χ̃

0
1) ATLAS-CONF-2013-007275-430 GeVb̃1

t̃1 t̃1(light), t̃1→bχ̃
±
1 1-2 e,µ 1-2 b Yes 4.7 m(χ̃

0
1)=55 GeV 1208.4305, 1209.2102110-167 GeVt̃1

t̃1 t̃1(light), t̃1→Wbχ̃
0
1 2 e,µ 0-2 jets Yes 20.3 m(χ̃

0
1) =m(t̃1)-m(W )-50 GeV, m(t̃1)<<m(χ̃

±
1 ) ATLAS-CONF-2013-048130-220 GeVt̃1

t̃1 t̃1(medium), t̃1→tχ̃
0
1 2 e,µ 2 jets Yes 20.3 m(χ̃

0
1)=0 GeV ATLAS-CONF-2013-065225-525 GeVt̃1

t̃1 t̃1(medium), t̃1→bχ̃
±
1 0 2 b Yes 20.1 m(χ̃

0
1)<200 GeV, m(χ̃

±
1 )-m(χ̃

0
1 )=5 GeV 1308.2631150-580 GeVt̃1

t̃1 t̃1(heavy), t̃1→tχ̃
0
1 1 e,µ 1 b Yes 20.7 m(χ̃

0
1)=0 GeV ATLAS-CONF-2013-037200-610 GeVt̃1

t̃1 t̃1(heavy), t̃1→tχ̃
0
1 0 2 b Yes 20.5 m(χ̃

0
1)=0 GeV ATLAS-CONF-2013-024320-660 GeVt̃1

t̃1 t̃1, t̃1→cχ̃
0
1 0 mono-jet/c-tag Yes 20.3 m(t̃1)-m(χ̃

0
1)<85 GeV ATLAS-CONF-2013-06890-200 GeVt̃1

t̃1 t̃1(natural GMSB) 2 e, µ (Z ) 1 b Yes 20.7 m(χ̃
0
1)>150 GeV ATLAS-CONF-2013-025500 GeVt̃1

t̃2 t̃2, t̃2→t̃1 + Z 3 e, µ (Z ) 1 b Yes 20.7 m(t̃1)=m(χ̃
0
1)+180 GeV ATLAS-CONF-2013-025271-520 GeVt̃2

ℓ̃L,Rℓ̃L,R, ℓ̃→ℓχ̃01 2 e,µ 0 Yes 20.3 m(χ̃
0
1)=0 GeV ATLAS-CONF-2013-04985-315 GeVℓ̃

χ̃+1 χ̃
−
1 , χ̃

+
1→ℓ̃ν(ℓν̃) 2 e,µ 0 Yes 20.3 m(χ̃

0
1)=0 GeV, m(ℓ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1 )) ATLAS-CONF-2013-049125-450 GeVχ̃±

1
χ̃+1 χ̃

−
1 , χ̃

+
1→τ̃ν(τν̃) 2 τ - Yes 20.7 m(χ̃

0
1)=0 GeV, m(τ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) ATLAS-CONF-2013-028180-330 GeVχ̃±

1
χ̃±1 χ̃

0
2→ℓ̃Lνℓ̃Lℓ(ν̃ν), ℓν̃ℓ̃Lℓ(ν̃ν) 3 e,µ 0 Yes 20.7 m(χ̃

±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, m(ℓ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1 )) ATLAS-CONF-2013-035600 GeVχ̃±

1 , χ̃
0
2

χ̃±1 χ̃
0
2→W χ̃

0
1Z χ̃

0
1 3 e,µ 0 Yes 20.7 m(χ̃

±
1 )=m(χ̃

0
2 ), m(χ̃

0
1)=0, sleptons decoupled ATLAS-CONF-2013-035315 GeVχ̃±

1 , χ̃
0
2

χ̃±1 χ̃
0
2→W χ̃

0
1h χ̃

0
1 1 e,µ 2 b Yes 20.3 m(χ̃

±
1 )=m(χ̃

0
2 ), m(χ̃

0
1)=0, sleptons decoupled ATLAS-CONF-2013-093285 GeVχ̃±

1 , χ̃
0
2

Direct χ̃
+
1 χ̃
−
1 prod., long-lived χ̃

±
1 Disapp. trk 1 jet Yes 20.3 m(χ̃

±
1 )-m(χ̃

0
1 )=160 MeV, τ(χ̃

±
1 )=0.2 ns ATLAS-CONF-2013-069270 GeVχ̃±

1

Stable, stopped g̃ R-hadron 0 1-5 jets Yes 22.9 m(χ̃
0
1)=100 GeV, 10 µs<τ(g̃)<1000 s ATLAS-CONF-2013-057832 GeVg̃

GMSB, stable τ̃, χ̃
0
1→τ̃(ẽ, µ̃)+τ(e, µ) 1-2 µ - - 15.9 10<tanβ<50 ATLAS-CONF-2013-058475 GeVχ̃0

1

GMSB, χ̃
0
1→γG̃ , long-lived χ̃

0
1 2 γ - Yes 4.7 0.4<τ(χ̃

0
1)<2 ns 1304.6310230 GeVχ̃0

1

q̃q̃, χ̃
0
1→qqµ (RPV) 1 µ, displ. vtx - - 20.3 1.5 <cτ<156 mm, BR(µ)=1, m(χ̃

0
1)=108 GeV ATLAS-CONF-2013-0921.0 TeVq̃

LFV pp→ν̃τ + X , ν̃τ→e + µ 2 e,µ - - 4.6 λ′311=0.10, λ132=0.05 1212.12721.61 TeVν̃τ
LFV pp→ν̃τ + X , ν̃τ→e(µ) + τ 1 e,µ + τ - - 4.6 λ′311=0.10, λ1(2)33=0.05 1212.12721.1 TeVν̃τ

Bilinear RPV CMSSM 1 e,µ 7 jets Yes 4.7 m(q̃)=m(g̃ ), cτLSP<1 mm ATLAS-CONF-2012-1401.2 TeVq̃, g̃
χ̃+1 χ̃

−
1 , χ̃

+
1→W χ̃

0
1, χ̃

0
1→ee ν̃µ, eµν̃e 4 e,µ - Yes 20.7 m(χ̃

0
1)>300 GeV, λ121>0 ATLAS-CONF-2013-036760 GeVχ̃±

1

χ̃+1 χ̃
−
1 , χ̃

+
1→W χ̃

0
1, χ̃

0
1→ττν̃e , eτν̃τ 3 e,µ + τ - Yes 20.7 m(χ̃

0
1)>80 GeV, λ133>0 ATLAS-CONF-2013-036350 GeVχ̃±

1

g̃→qqq 0 6-7 jets - 20.3 BR(t)=BR(b)=BR(c)=0% ATLAS-CONF-2013-091916 GeVg̃

g̃→t̃1t, t̃1→bs 2 e,µ (SS) 0-3 b Yes 20.7 ATLAS-CONF-2013-007880 GeVg̃

Scalar gluon pair, sgluon→qq̄ 0 4 jets - 4.6 incl. limit from 1110.2693 1210.4826100-287 GeVsgluon

Scalar gluon pair, sgluon→tt̄ 2 e,µ (SS) 1 b Yes 14.3 ATLAS-CONF-2013-051800 GeVsgluon

WIMP interaction (D5, Dirac χ) 0 mono-jet Yes 10.5 m(χ)<80 GeV, limit of<687 GeV for D8 ATLAS-CONF-2012-147704 GeVM* scale

Mass scale [TeV]10−1 1
√
s = 7 TeV
full data

√
s = 8 TeV

partial data

√
s = 8 TeV
full data

ATLAS SUSY Searches* - 95% CL Lower Limits
Status: SUSY 2013

ATLAS Preliminary∫
L dt = (4.6 - 22.9) fb−1

√
s = 7, 8 TeV

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.



���8

some talk given by someone in the audience

technicolor

we’ve seen this 
for a while

1978-2011

SUSY
1980-2012

time to add this?

5Thursday, November 22, 2012
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The dynamics in the dark sector may have nothing 

to do with the electroweak symmetry breaking !!!

We need to study dark 
matter for its own purpose
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One Number to Explain

Most popular models:  “WIMP miracle”

⌦DM =
s0

⇢c

✓
45

⇡g⇤

◆1/2
xf

mpl

1

h�vi h�vi ⇡ 1 pb ⇡ ⇡↵2

8m2
DM

for mDM = 100 GeV

This could be just one option: 	


dark matter is related to the electroweak scale

⌦
DM

⌦
Baryon

= m
DM

n
DM

m
p

np
⇡ 5 ⇠ 6
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Two Options in dark QCD

• Thermal dark matter (not necessarily weakly-
interaction)

h�vi ⇡ 1 pb

nDM ⇠ np

mDM ⇠ mp

⌦
DM

⌦
Baryon

= m
DM

n
DM

m
p

np
⇡ 5 ⇠ 6

(1):

(2):
Two conditions:

• Asymmetric dark matter

h�vi ⇡
g4�

4⇡m2
DM

⇡ (4⇡)2

4⇡m2
DM
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Thermal Dark Baryon

• For simplicity, we just use                    as dark QCD 
gauge group.  With two flavors of dark quarks, the 
“dark neutron” could be the dark matter candidate

SU(Nd = 3)

It is a Dirac dark fermion: general study for Dirac DM:	

Harnik and Kribs: 0810:5557

It is not p-wave suppressed; however:

nd

nd

⇡d

⇡d

⇡d

⇡d

⇡d     then decays 
to SM particles
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Thermal Dark Baryon
• Fortunately, we have experimental data from 

our QCD sector

46. Plots of cross sections and related quantities 11
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Figure 46.10: Total and elastic cross sections for pp and pp collisions as a function of laboratory beam momentum and total center-of-mass
energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS group,
IHEP, Protvino, April 2012)
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Thermal Dark Baryon
• Fortunately, we have experimental data from 

our QCD sector

46. Plots of cross sections and related quantities 11
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Figure 46.10: Total and elastic cross sections for pp and pp collisions as a function of laboratory beam momentum and total center-of-mass
energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS group,
IHEP, Protvino, April 2012)
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Thermal Dark Baryon

• Use polynomial to fit the data
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Thermal Dark Baryon

• Use polynomial to fit the data
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Thermal Dark Baryon

• Too high for the current hadron colliders

• Direct detection can still probe the thermal 
dark neutron

a) Tree-level coupling to Z boson

b) Dimension-5 operator: 
e

⇤dQCD
nd�

µ⌫nd Fµ⌫

c) Dimension-7 operator: 

g2s
⇤3
dQCD

ndnd (G
a
µ⌫)

2

LSD collaboration, 
1301.1693
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Direct Detection from LUX
5

0.64 ± 0.16 events from ER leakage are expected below
the NR mean, for the search dataset. The spatial
distribution of the events matches that expected from the
ER backgrounds in full detector simulations. We select
the upper bound of 30 phe (S1) for the signal estimation
analysis to avoid additional background from the 5 keV

ee

x-ray from 127Xe.
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FIG. 4. The LUX WIMP signal region. Events in the
118 kg fiducial volume during the 85.3 live-day exposure are
shown. Lines as shown in Fig. 3, with vertical dashed cyan
lines showing the 2-30 phe range used for the signal estimation
analysis.

Confidence intervals on the spin-independent WIMP-
nucleon cross section are set using a profile likelihood
ratio (PLR) test statistic [35], exploiting the separation
of signal and background distributions in four physical
quantities: radius, depth, light (S1), and charge (S2).
The fit is made over the parameter of interest plus three
Gaussian-constrained nuisance parameters which encode
uncertainty in the rates of 127Xe, �-rays from internal
components and the combination of 214Pb and 85Kr.
The distributions, in the observed quantities, of the four
model components are as described above and do not
vary in the fit: with the non-uniform spatial distributions
of �-ray backgrounds and x-ray lines from 127Xe obtained
from energy-deposition simulations [31].

The energy spectrum of WIMP-nucleus recoils is
modeled using a standard isothermal Maxwellian velocity
distribution [36], with v

0

= 220 km/s; v
esc

= 544 km/s;
⇢

0

= 0.3 GeV/c

3; average Earth velocity of 245 km s�1,
and Helm form factor [37, 38]. We conservatively model
no signal below 3.0 keV

nr

(the lowest energy for which
direct NR yield measurements exist [30, 40]). We do
not profile the uncertainties in NR yield, assuming a
model which provides excellent agreement with LUX
data (Fig. 1 and [39]), in addition to being conservative
compared to past works [23]. We also do not account
for uncertainties in astrophysical parameters, which are
beyond the scope of this work. Signal models in S1 and S2

are obtained for each WIMP mass from full simulations.
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W
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FIG. 5. The LUX 90% confidence limit on the spin-
independent elastic WIMP-nucleon cross section (blue),
together with the ±1� variation from repeated trials, where
trials fluctuating below the expected number of events for
zero BG are forced to 2.3 (blue shaded). We also show
Edelweiss II [41] (dark yellow line), CDMS II [42] (green line),
ZEPLIN-III [43] (magenta line) and XENON100 100 live-
day [44] (orange line), and 225 live-day [45] (red line) results.
The inset (same axis units) also shows the regions measured
from annual modulation in CoGeNT [46] (light red, shaded),
along with exclusion limits from low threshold re-analysis
of CDMS II data [47] (upper green line), 95% allowed
region from CDMS II silicon detectors [48] (green shaded)
and centroid (green x), 90% allowed region from CRESST
II [49] (yellow shaded) and DAMA/LIBRA allowed region [50]
interpreted by [51] (grey shaded).

The observed PLR for zero signal is entirely consistent
with its simulated distribution, giving a p-value for the
background-only hypothesis of 0.35. The 90% C. L.
upper limit on the number of expected signal events
ranges, over WIMP masses, from 2.4 to 5.3. A variation
of one standard deviation in detection e�ciency shifts
the limit by an average of only 5%. The systematic
uncertainty in the position of the NR band was estimated
by averaging the di↵erence between the centroids of
simulated and observed AmBe data in log(S2b/S1). This
yielded an uncertainty of 0.044 in the centroid, which
propagates to a maximum uncertainty of 25% in the high
mass limit.
The 90% upper C. L. cross sections for spin-

independent WIMP models are thus shown in Fig. 5
with a minimum cross section of 7.6⇥10�46 cm2 for a
WIMP mass of 33 GeV/c2. This represents a significant
improvement over the sensitivities of earlier searches [42,
43, 45, 46]. The low energy threshold of LUX permits
direct testing of low mass WIMP hypotheses where
there are potential hints of signal [42, 46, 49, 50].

at higher masses, the limits become weaker and are 
proportional to the dark matter mass
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Direct Detection from LUX

1 10 100 1000 104 105 106
10-46

10-44

10-42

10-40

mDM HGeVL

W
IM
P-
nu
cl
eo
n
s
Hcm

2 L tree-level

dim-5

dim-7

more 
operators?



���18

• Thermal dark matter

• Asymmetric dark matter

nDM ⇠ np

mDM ⇠ mp

⌦
DM

⌦
Baryon

= m
DM

n
DM

m
p

np
⇡ 5 ⇠ 6

(1):

(2):
Two conditions:



���19

nDM ⇠ np(1):
The first condition can be satisfied by introducing 
some non-trivial number density history  

David B. Kaplan, PRL, 68, 741 (1992)

Barr, Chivukula, Farhi, PLB, 241, 387 (1990)

Dodelson, Greene, Widrow, NPB, 372, 467 (1992)

Fujii, Yanagida, PLB, 542, 80 (2002)

Kitano, Low, PRD, 71, 023510 (2005)

Farrar, Zaharijas, PRL, 96, 041302 (2006)

Kaplan, Luty, Zurek, PRL, 79, 115016 (2009)

Shelton, Zurek, PRD, 82, 123512 (2010)

Davoudiasl, Morrissey, Sigurdson, Tulin, PRL, 105, 211304 (2010)

Buckley, Randall, JHEP, 1109, 009 (2011)
......

Gudnason, Kouvaris, Sannino, PRD, 73, 115003 (2006)
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mDM ⇠ mp(2):

The dark matter could be like ordinary baryons 
from an asymmetry mechanism

The dark matter mass is related to the QCD scale
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If dark matter is a “dark baryon” from a new QCD-
like strong dynamics in the dark matter sector

⇤dQCD ⇠ ⇤QCD ?

Need to have QCD and dQCD gauge couplings 
related to each other
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Dimensional Transmutation

�0 < 0⇤2
QCD ⇡ M2

Pl e
4⇡/[�s

0 ↵s(M
2
Pl)]

⇤2
dQCD ⇡ M2

Pl e
4⇡/[�d

0 ↵d(M
2
Pl)]

The confinement scale is sensitive to the beta 
function (matter content) and the coupling at a UV 
scale

Need a mechanism to relate the gauge couplings of 
two gauge groups in an infrared scale 
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Our idea

Particles charged under both gauge groups can 
induce Infrared Fixed Points (IRFP) and have both 
gauge couplings related to each other in the IR 

�(g)

Banks-Zaks fixed point
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Matter Content

Field SU(Nc)QCD SU(Nd)darkQCD multiplicity

SM fermion Nc 1 nfc

SM scalar Nc 1 nsc

DM fermion 1 Nd nfd

DM scalar 1 Nd nsd

joint fermion Nc Nd nfj

joint scalar Nc Nd nsj

Table 1: General matter content

1 Introduction

[1]

2 The Scale of Dark Matter

As we mentioned in the abstract, we are not only trying to explain the dark matter number density,

but also the dark matter mass to be close to the proton or baryon masses. We need to explain why

the dark matter mass is related to the QCD scale.

In light of the similarity of the baryon energy density and dark matter energy density, we as-

sume that a similar QCD-like dynamics exists in the dark matter sector. Neglecting the electroweak

symmetry, we have the gauge group to be

Ggauge = SU(Nc)QCD × SU(Nd)dQCD . (1)

For simplicity, we only consider the case Nd = Nc = 3. To study the gauge coupling runnings, we

treat the Dirac fermion and complex scalar field representations as general first and make specific

choices later. Only introducing fundamental representations, we have the matter content to be At

two-loop level, the two gauge couplings gc and gd affect each other’s running. From Ref. [2], we have

the definition of the beta functions as

dgc
d(log µ)

= βc(gc, gd) ,
dgd

d(log µ)
= βd(gc, gd) . (2)

1

Field SU(Nc)QCD SU(Nd)darkQCD multiplicity

SM fermion Nc 1 nfc

SM scalar Nc 1 nsc

DM fermion 1 Nd nfd

DM scalar 1 Nd nsd

joint fermion Nc Nd nfj

joint scalar Nc Nd nsj

Table 1: General matter content

1 Introduction

[1]

2 The Scale of Dark Matter

As we mentioned in the abstract, we are not only trying to explain the dark matter number density,

but also the dark matter mass to be close to the proton or baryon masses. We need to explain why

the dark matter mass is related to the QCD scale.

In light of the similarity of the baryon energy density and dark matter energy density, we as-

sume that a similar QCD-like dynamics exists in the dark matter sector. Neglecting the electroweak

symmetry, we have the gauge group to be

Ggauge = SU(Nc)QCD × SU(Nd)dQCD . (1)

For simplicity, we only consider the case Nd = Nc = 3. To study the gauge coupling runnings, we

treat the Dirac fermion and complex scalar field representations as general first and make specific

choices later. Only introducing fundamental representations, we have the matter content to be At

two-loop level, the two gauge couplings gc and gd affect each other’s running. From Ref. [2], we have

the definition of the beta functions as

dgc
d(log µ)

= βc(gc, gd) ,
dgd

d(log µ)
= βd(gc, gd) . (2)

1

a general matter content

upper bounds on multiplicities from asymptotic freedom 
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Gauge Coupling Running

Field SU(Nc)QCD SU(Nd)darkQCD multiplicity

SM fermion Nc 1 nfc

SM scalar Nc 1 nsc

DM fermion 1 Nd nfd

DM scalar 1 Nd nsd

joint fermion Nc Nd nfj

joint scalar Nc Nd nsj

Table 1: General matter content

1 Introduction

[1]

2 The Scale of Dark Matter

As we mentioned in the abstract, we are not only trying to explain the dark matter number density,

but also the dark matter mass to be close to the proton or baryon masses. We need to explain why

the dark matter mass is related to the QCD scale.

In light of the similarity of the baryon energy density and dark matter energy density, we as-

sume that a similar QCD-like dynamics exists in the dark matter sector. Neglecting the electroweak

symmetry, we have the gauge group to be

Ggauge = SU(Nc)QCD × SU(Nd)dQCD . (1)

For simplicity, we only consider the case Nd = Nc = 3. To study the gauge coupling runnings, we

treat the Dirac fermion and complex scalar field representations as general first and make specific

choices later. Only introducing fundamental representations, we have the matter content to be At

two-loop level, the two gauge couplings gc and gd affect each other’s running. From Ref. [2], we have

the definition of the beta functions as

dgc
d(log µ)

= βc(gc, gd) ,
dgd

d(log µ)
= βd(gc, gd) . (2)

1

c $ d for �d(gc, gd)

2 The Scale of Dark QCD

Assuming an asymptotic-free QCD-like dynamics in the dark sector, the dark baryon in this sector

could be a stable particle and serve as a dark matter candidate. Neglecting the electroweak symmetry,

we have the gauge group to be SU(Nc)QCD × SU(Nd)dQCD. For simplicity, we only consider the case

Nd = Nc = 3 and fundamental representations for fermions and scalars under the gauge group. Other

representations will not change the generic conclusions of this paper. Other than nfc (nfd) Dirac

fermions and nsc (nsd) complex scalars as fundamentals of SU(Nc) [SU(Nd)], we also introduce nfj

Dirac fermions and nsj complex scalars as bi-fundaments of SU(Nc) × SU(Nd), which are crucial

to relate the IRFP gauge couplings in the two sectors. At two-loop level, the two gauge couplings

gc and gd affect each other’s running. Defining the beta functions as dgc/d(log µ) = βc(gc, gd) and

dgd/d(log µ) = βd(gc, gd), we have the beta functions at two-loop as [19] 1

βc(gc, gd) =
g3c

16π2

[

2

3
T (Rf ) 2(nfc +Nd nfj) +

1

3
T (Rs) (nsc +Nd nsj)−

11

3
C2(Gc)

]

+
g5c

(16π2)2

[(

10

3
C2(Gc) + 2C2(Rf )

)

T (Rf ) 2 (nfc +Nd nfj)

+

(

2

3
C2(Gc) + 4C2(Rs)

)

T (Rs) (nsc +Nd nsj) −
34

3
C2
2 (Gc)

]

+
g3c g

2
d

(16π2)2
[

2C2(Rf )T (Rf ) 2Nd nfj + 4C2(Rs)T (Rs)Nd nsj

]

. (1)

The formula for βd(gc, gd) is obtained from βc(gc, gd) by interchanging the indexes c ↔ d. Here,

C2(Gc) = Nc and C2(Gd) = Nd are the quadratic Casimirs of the adjoint representations; C2(Rf ) =

C2(Rs) = (N2
c,d − 1)/(2Nc,d) are the quadratic Casimirs of the fundamental representations; T (Rf ) =

1/2 and T (Rs) = 1/2. We have checked and found that the electroweak gauge couplings and the top

Yukawa coupling have negligible effects on the QCD and dark QCD couplings in the infrared. Similarly

to the Banks-Zaks fixed point for a single gauge coupling [18], one can solve the zero beta-function

equations βc,d(gc, gd) = 0 and obtain the perturbative IRFP as

α∗
s ≡ α∗

s(nfc, nsc , nfd , nsd , nfj , nsj) ,

α∗
d ≡ α∗

d(nfc , nsc , nfd , nsd , nfj , nsj) , (2)

with αs = g2c/4π and αd = g2d/4π. Here, we assume that there are no masses for the fermions and

scalars between the UV scale and a lower scale of M and no threshold corrections for the IRFP
1In Ref. [19], chiral fermions are used. In our notation, we use Dirac fermions, so there is an additional factor of two

in the formula.

3

Jones, PRD, 25, 581 (1982)
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Infrared Fixed Point

�c(gc, gd) = �d(gc, gd) = 0
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2 The Scale of Dark QCD

Assuming an asymptotic-free QCD-like dynamics in the dark sector, the dark baryon in this sector

could be a stable particle and serve as a dark matter candidate. Neglecting the electroweak symmetry,

we have the gauge group to be SU(Nc)QCD × SU(Nd)dQCD. For simplicity, we only consider the case

Nd = Nc = 3 and fundamental representations for fermions and scalars under the gauge group. Other

representations will not change the generic conclusions of this paper. Other than nfc (nfd) Dirac

fermions and nsc (nsd) complex scalars as fundamentals of SU(Nc) [SU(Nd)], we also introduce nfj

Dirac fermions and nsj complex scalars as bi-fundaments of SU(Nc) × SU(Nd), which are crucial

to relate the IRFP gauge couplings in the two sectors. At two-loop level, the two gauge couplings

gc and gd affect each other’s running. Defining the beta functions as dgc/d(log µ) = βc(gc, gd) and

dgd/d(log µ) = βd(gc, gd), we have the beta functions at two-loop as [19] 1

βc(gc, gd) =
g3c

16π2

[

2

3
T (Rf ) 2(nfc +Nd nfj) +

1

3
T (Rs) (nsc +Nd nsj)−

11

3
C2(Gc)

]

+
g5c

(16π2)2

[(

10

3
C2(Gc) + 2C2(Rf )

)

T (Rf ) 2 (nfc +Nd nfj)

+

(

2

3
C2(Gc) + 4C2(Rs)

)

T (Rs) (nsc +Nd nsj) −
34

3
C2
2 (Gc)

]

+
g3c g

2
d

(16π2)2
[

2C2(Rf )T (Rf ) 2Nd nfj + 4C2(Rs)T (Rs)Nd nsj

]

. (1)

The formula for βd(gc, gd) is obtained from βc(gc, gd) by interchanging the indexes c ↔ d. Here,

C2(Gc) = Nc and C2(Gd) = Nd are the quadratic Casimirs of the adjoint representations; C2(Rf ) =

C2(Rs) = (N2
c,d − 1)/(2Nc,d) are the quadratic Casimirs of the fundamental representations; T (Rf ) =

1/2 and T (Rs) = 1/2. We have checked and found that the electroweak gauge couplings and the top

Yukawa coupling have negligible effects on the QCD and dark QCD couplings in the infrared. Similarly

to the Banks-Zaks fixed point for a single gauge coupling [18], one can solve the zero beta-function

equations βc,d(gc, gd) = 0 and obtain the perturbative IRFP as

α∗
s ≡ α∗

s(nfc, nsc , nfd , nsd , nfj , nsj) ,

α∗
d ≡ α∗

d(nfc , nsc , nfd , nsd , nfj , nsj) , (2)

with αs = g2c/4π and αd = g2d/4π. Here, we assume that there are no masses for the fermions and

scalars between the UV scale and a lower scale of M and no threshold corrections for the IRFP
1In Ref. [19], chiral fermions are used. In our notation, we use Dirac fermions, so there is an additional factor of two

in the formula.

3
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Dark QCD Scales
Decouple all particles except dark quarks at a 
common scale M

↵s

⇤UVM⇤QCD

 
 

 

⇤dQCD

↵d
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Dark QCD Scales

↵s(MZ) + ↵⇤
s

M

+ ↵⇤
d

↵d(⇤dQCD)

⇤dQCD

⇤QCD
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Estimation of Dark Baryon Masses

Require non-perturbative tools like Lattice QCD

Following the analysis of the Cornwall, Jackiw, 
Tomboulis effective potential for chiral symmetry 
breaking, one has

↵d C2(Rf ) > ⇡/3 ↵d > ⇡/4

Using this condition to approximately determine 
the confinement scales, we have

mp ⇡ 1.5⇤QCD

so, mD ⇡ 1.5⇤dQCD

Lattice inputs 	

required
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A Sample of Representations

Model nfc nfd nfj nsc nsd nsj α∗
s α∗

d M (GeV) mD (GeV)

A 6 5 3 0 2 0 0.095 0.175 518 31

B 6 6 3 1 0 0 0.083 0.120 2030 8.6

C 6 6 3 2 2 0 0.070 0.070 13500 0.32

D 7 7 2 2 0 2 0.078 0.168 3860 72

E 7 7 2 2 1 2 0.090 0.133 869 3.5

F 8 8 2 2 0 1 0.074 0.149 7700 29

G 8 8 2 2 1 1 0.082 0.118 2244 1.2

Table 1: The perturbative IRFP coupling values, decoupling scale M and the dark baryon mass mD

for some representative models. Matter fields that are charged under both gauge symmetries decouple
at a mass scale M , which is determined from α∗

s and αs(MZ) = 0.1197 ± 0.0016 [20,21].

calculation. Assuming a common mass M for all scalars and fermions except the QCD quarks and

dark fermions charged only under dark QCD, the QCD coupling values, αs(M) = α∗
s and αs(MZ) =

0.1197 ± 0.0016 [20, 21], can be used to determine the decoupling scale M . For some representative

models, we show the IRFP gauge coupling values and the decoupling scale M in Table 1.

Once the scale M and the dark QCD coupling value αd(M) = α∗
d are known, we calculate the dark

QCD gauge coupling from the scale M to a lower scale. Because the gauge coupling αd increases as

the scale decreases, at a lower scale the dark QCD coupling can be large enough to trigger confinement

and chiral symmetry breaking. The actual determination of such a scale requires a non-perturbative

calculation. As a guidance, we use the chiral symmetry breaking condition from Cornwall, Jackiw and

Tomboulis effective potential [22], which has αd C2(Rf ) > π/3 or αd > π/4 [23]. From this condition,

we define the dark QCD scale through the relation αd(ΛdQCD) = π/4. Applying the same calculation to

our QCD scale, we have the relation between the proton mass and ΛQCD as mp ≈ 1.5ΛQCD. We apply

this relation to the dark QCD and obtain the dark matter (dark baryon) mass as mD ≈ 1.5ΛdQCD.

Similar to light flavors in our QCD, the dark quark masses have been assumed to be much lighter

than ΛdQCD and their contributions to the dark baryon mass can be neglected. We show the values

of mD for different models in the last column of Table 1.

There are around one million models that have both couplings to be asymptotic-free in UV and

provide infrared fixed points to explain dark baryon masses. Requiring 0.05 ≤ α∗
s ≤ 0.1 and a

perturbative α∗
d, the number of models reduces to tens of thousand. To understand the correlation

betweenM and the dark baryon mass, we further require 1.5 < mD/mp < 15, imagining that nD/nB =

O(1), such that the experimental value of ΩDM/ΩB can be explained up to a range of a factor of three.

4
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Many Models
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Statistic Distribution of M
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1.5 < mD/mp < 15

The bi-fundamental of QCD and dark QCD prefers 
to have masses below 2 TeV
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Example Model for Number Density

� : (3̄, 3)1/3

nDM ⇠ np(1):

The general idea: generating asymmetry for the 
bi-fundamental particles 

3 Asymmetry from Leptogenesis

Leptogenesis [6] is a well known mechanism to explain the baryon asymmetry of the universe (BAU). It

uses CP-violating, out-of-equilibrium decays of heavy righthanded neutrinos, Ni, to generate a lepton

asymmetry at high scales. This lepton asymmetry is then partially transferred into the quark sector

through electroweak sphaleron processes.

In addition to the lepton asymmetry, it is possible to also generate an asymmetry in other quantum

numbers from Ni decays [7, 8]. In the following we show how the Leptogenesis mechanism can generate

both the BAU and the DM asymmetry. Different from [7, 8], both the baryon and the DM asymmetries

will be controlled by the same parameters.

Model overview

The main idea is to induce an asymmetry in the (3, 3)1/3 fermion Y1, such that ∆nY1
≡ nY1

−nȲ1
̸= 0.

Note that we only write down the quantum numbers under SU(3)QCD × SU(3)dark ×U(1)B , since all

fields involved will be SU(2)weak singlets. Since Y1 carries both QCD and Dark color, its decays will

distribute the asymmetry evenly between the visible and the dark sector. In order to generate the

asymmetry, we introduce a (3, 3)1/3 scalar Φ, and introduce Yukawa couplings

L ⊃ kiȲ1ΦNi + h.c.. (5)

where ψc = Cψ̄T and C is the charge conjugation matrix. Here Ni, (i = 1, 2, 3) are three heavy

righthanded neutrinos with Majorana masses Mi that are also responsible to generate small SM

neutrino masses through the seesaw mechanism, and we assumeMi < Mj for i < j. Out of equilibrium

decays of N1 in the early universe can generate asymmetries ∆n0
Y and ∆nΦ = −∆n0

Y , provided that

Im(k21(k
∗
2)

2) is nonzero. An estimate of the amount of asymmetry generated from these decays will

be presented later.

Additional fields and couplings are required to allow the asymmetry to be transferred to baryons

and dark matter. We introduce a second bi-triplet Y2 transforming as (3, 3)−2/3, and Yukawa couplings

L ⊃ κ1ΦȲ
c
1 Y2 + κ2ΦȲ2eR + κ3ΦX̄LdR + h.c., (6)

where eR and dR are the right-handed SM leptons and quarks, respectively. For simplicity we can

assume small mass hierarchies between the Yi and Φ fields. Then we can imagine the decay chains

Y1 → Ȳ2Φ† followed by Y2 → ΦeR and Φ → XLd̄R. The asymmetries that are initially stored in the Φ
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Asymmetry of the bi-fundamental
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1 Y2 + κ2ΦȲ2eR + κ3ΦX̄LdR + h.c., (6)

where eR and dR are the right-handed SM leptons and quarks, respectively. For simplicity we can

assume small mass hierarchies between the Yi and Φ fields. Then we can imagine the decay chains
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c
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the lepton flavors equilibrate, we use the well-known relation nB = 28/79nB−L [27, 28] to obtain the

ratio of nD/nB as

|nD|
nB

=
79

56
. (8)

The interactions introduced in Eq. (3) and (4) conserve a dark matter Z2 symmetry. Under this Z2,

we have the fields X, Φ, eR, Y1 to be odd and Y2 and Ni to be even. So, the dark baryon constructed

from three X field’s is Z2 odd and stable.

Before we calculate the energy density ratio, we digress into discussing how to obtain ∆nY1 from

leptogenesis. The lightest right-handed neutrino, N1, must decay sufficiently out of equilibrium. This

is possible if the decay rate ΓN1 = 9|k1|2M1/(16π) is not too different from the Hubble expansion

rate of the universe H(T = M1) at a temperature T = M1. This condition ΓN1 ∼ H(M1) roughly

translates to |k1|2 ∼ M1/(1017 GeV), so it can be easily satisfied for a N1 mass below the Planck scale.

The CP-asymmetry in the decayN1 → Y1Φ† can be inferred from the known leptogenesis result [29].

In the hierarchical limit, M2 ≫ M1, and neglecting finite temperature corrections, it is given by [30]

ϵ =
Γ(N1 → Y1Φ†)− Γ(N1 → Ȳ1Φ)

Γ(N1 → Y1Φ†) + Γ(N1 → Ȳ1Φ)
≈ −

3

2

1

8π

Im[k21(k
∗
2)

2]

|k1|2
M1

M2
. (9)

In the strong washout regime, ΓN1 ≫ H(M1), the final asymmetry can be estimated as [31,32]

QY1(∞) =
π2

6zfK1
ϵQeq

N1
(0) , (10)

where Qi = ni/s are the entropy normalized particle densities, K1 = ΓN1/H(M1) and zf is the freeze-

out temperature where the washout decouples, with zf ∼ 7− 10 for K1 = 10− 100. The equilibrium

N1 density at high temperatures is approximately given by Qeq
N1

(0) ≈ 4/g⋆ with g⋆ ≈ 300 in our model.

Choosing M1 = 1013 GeV, |k1| = |k2| = 0.1, and M2 = 10M1, we have QY1(∞) ≈ 2 × 10−9 sin(2ϕ),

where ϕ is the relative CP phase in the couplings k1,2. In comparison, the observed baryon to entropy

ratio today is 9×10−11 [32]. Therefore it is easy to see that a large enough asymmetry can be generated

to explain the observed baryon and dark baryon asymmetries of the universe.

After discussing asymmetry generation, we now come back to calculate ΩDM/ΩB, which is simply

given by

ΩDM

ΩB
=

nD mD

nB mp
≈

79

56

mD

mp
. (11)

Assuming the same nD/nB = 79/56 for all models, we show the dark matter energy densities in Fig. 3

for the representative models in Table 1. Note that while we show a variety of models here, only

7

�n� = �3�nY1



���35

Asymmetries of Baryon and Dark Baryon

3 Asymmetry from Leptogenesis

Leptogenesis [6] is a well known mechanism to explain the baryon asymmetry of the universe (BAU). It
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1 Y2 + κ2ΦȲ2eR + κ3ΦX̄LdR + h.c., (6)
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4

Without weak interaction and electroweak sphaleron 
processes

The main idea to generate an asymmetry for a particle that can decay into ordinary baryons and

dark baryons, so nB and nD can share the same source of asymmetry. The particles bi-fundamental

of QCD and dark QCD are natural candidates for this. For instance, one can induce an asymmetry in

a (3, 3)1/3 fermion Y1, such that ∆nY1 ≡ nY1 − nȲ1
̸= 0. Note that we only write down the quantum

numbers under SU(3)QCD × SU(3)dQCD × U(1)Y , since all fields involved will be SU(2)weak singlets.

Since Y1 carries both QCD and dark QCD colors, its decays will distribute the asymmetry evenly

between the visible and the dark sectors. To generate the asymmetry via leptogenesis, we introduce

a (3, 3)1/3 scalar Φ with Yukawa couplings

L ⊃ kiȲ1ΦNi + h.c. . (3)

Here Ni, (i = 1, 2, 3) are three heavy right-handed neutrinos with Majorana masses Mi (Mi < Mj

for i < j) that could also be responsible to generate small SM neutrino masses through the seesaw

mechanism. Out of equilibrium decays of N1 in the early universe can generate asymmetries ∆nY1 ≡
nY1 − nȲ1

and ∆nΦ = −∆nY1, provided that Im[k21(k
∗
2)

2] is nonzero. An estimate of the amount of

asymmetry generated from these decays will be presented later.

Additional fields and couplings are required to allow the asymmetry to be transferred to baryons

and dark baryons. We introduce a second bi-triplet fermion Y2 transforming as (3, 3)−2/3, and Yukawa

couplings

L ⊃ κ1 Φ Ȳ c
1 Y2 + κ2 Φ Ȳ2 eR + κ3Φ X̄L dR + h.c. , (4)

where Y c
1 = C Y T

1 and C is the charge conjugation operator. Here, eR and dR are the right-handed SM

charged-leptons and down-up quarks, respectively, with the flavor indices suppressed. For simplicity,

we assume that the Φ field is lighter than Yi but with a small mass hierarchy. Then, we have the

decay chains Y1 → Ȳ2 + Φ† followed by Y2 → Φ + eR and Φ → XL + d̄R. The asymmetries that are

initially stored in the Φ and Y1 fields are distributed as follows:

∆ndR ≡ 3nB = 3∆nY1 , (5)

∆neR ≡ nL = −∆nY1 , (6)

∆nX ≡ 3nD = −3∆nY1 , (7)

where we have taken into account that each (dark) quark carries 1/3 of the (dark) baryon number. The

B−L asymmetry is given by nB−nL = 2∆nY1 . Weak interaction, Yukawa interactions and electroweak

sphaleron processes will redistribute the asymmetries across SM quarks and leptons. Assuming that
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Ratios of Energy Densities

In the strong washout regime, ΓN1
> H(M1), the final asymmetry can be estimated as [13, 14]

QY1
(∞) =

π2

6zfK1
ϵQeq

N1
(0) , (13)

where Qi = ni/s are the entropy normalized particle densities, K1 = ΓN1
/H(M1) and zf is the freeze-

out temperature where the washout decouples, with zf ∼ 7− 10 for K1 = 10− 100. The equilibrium

N1 density at high temperatures is approximately given by Qeq
N1

(0) ≈ 4/g⋆.

For M1 = 1013 GeV, |k1| = |k2| = 0.1, and M2 = 10M1, the CP asymmetry is of order 6 × 10−5.

Inserting the remaining approximations, we find QY1
(∞) ≈ 2 × 10−9 sin(2ϕ), where ϕ is the relative

CP phase in the couplings k1,2. In comparison, the observed baryon to entropy ratio today is 9×10−11.

Therefore it is easy to see that a large enough asymmetry can be generated to explain the observed

baryon asymmetry of the universe.

4 The Matter to Dark Matter Ratio

We are now in a position to calculate the matter to dark matter ratio. Remember that in our universe,

ΩDM/ΩBaryon ≈ 5. The ratio of energy densities is given by

ΩDM

ΩBaryon
=

nDmD

nBmp
≈

79

56

mD

mp
, (14)

The DM mass depends on the strong dynamics of dark QCD, and is therefore not calculable analyti-

cally. Due to the similarities between the confining SU(3) sectors, we can hope to obtain an estimate

for mD by comparing with QCD. The estimation of the dark matter mass is in Table 2.

Among different representations, we have the representation (7, 7, 2, 2, 1, 2) to have the dark matter

mass around 3.5 GeV and the ratio ΩBaryon ≈ 4.9, which is very close to the measured value from

CMB. For other representations, we show the dark matter energy density in Fig. 1.

5 LHC and dark matter phenomenologies

So far, the chiral symmetry, SU(nfd)L × SU(nfd)R, associated with dark quarks are unbroken. To

provide masses to the otherwise massless Nambu-Goldston bosons, we adopt the Higgs portal and

introduce the dark-flavor-blind interactions, X̄XH†H/M , which can be easily UV-completed by in-

troducing a gauge singlet field S with two couplings X̄XS and SH†H. The dark pion mass has the

approximate relation: m2
πd
f2
πd

∼ mXΛ3
dQCD with the dark quark mass mX ∼ v2EW/M . The Yukawa

coupling of dark quarks to the Higgs boson is ∼ m2
πd
f2
πd
/(vEW Λ3

dQCD), which is suppressed by a power

of f2
πd
/Λ2

dQCD ∼ 1/(4π)2 and will not affect the SM Higgs properties in a significant way.
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Figure 3: The ratios of the dark baryon energy density over the ordinary baryon energy density for
different models in Table 1. The dark lines are the ratios ΩDM/ΩB calculated using Eq. (11) for
different models, while the orange (grey) bands are obtained by letting the dark baryon mass vary
between 1/2 and 2 times the estimated value, to account for the uncertainty of the non-perturbative
estimation of ΛdQCD (a more precise calculation could be done at Lattice [33]). The green line is the
measured value of ΩDM/ΩB from the Planck collaboration.

models D, E, F and G have the necessary particle content to implement the asymmetry mechanism

in this section. Among different models, the model “E” has a dark matter mass around 3.5 GeV and

the ratio ΩDM/ΩB ≈ 4.9, which is very close to the measured value from the Planck collaboration.

A prominent issue in asymmetric dark matter model building is that the dark matter - anti dark

matter annihilation rate must be sufficiently efficient to prevent a large symmetric relic density. In our

model, this potential problem is naturally solved because the dark baryon and anti-baryon annihilation

into dark pions is very efficient, similar to the proton and anti-proton annihilation in the SM. The dark

pions do not carry dark baryon number, so they can decay into SM particles (unless they have their

discrete symmetries for stability, for instance in [34–36], which we don’t consider here). We discuss

their properties in the next section for the phenomenology of our model.

4 LHC and dark matter phenomenology

So far, the chiral symmetry, SU(nfd)L × SU(nfd)R, associated with the dark quarks is unbroken. To

provide masses to the otherwise massless Nambu-Goldstone bosons or dark pions, πd, we adopt the

Higgs portal and introduce the dark-flavor-blind interactions, X̄XH†H/Λ, which can be easily UV-

completed by introducing a gauge singlet field S with two couplings X̄XS and SH†H. The dark pion

8
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Dark Matter Phenomenology

All relevant phenomenology depends on the bi-
fundamental particles, which have a mass at 1-2 TeV

Integrate out the � field

2
3 XL�µXL dR�µdR

M2
�

mass has the approximate relation: m2
πd
f2
πd

∼ mXΛ3
dQCD, with the dark quark mass mX ∼ v2EW/Λ. 2

The dark pion masses are controlled by additional UV parameters and can well be below the dark

baryon mass.

The dark QCD and our QCD sectors are coupled to each other through the bi-fundamental parti-

cles, whose mass scale M is crucial for the phenomenology of this class of dark QCD models. Integrat-

ing out the bi-fundamental Φ field, one can generate the operator κ23 XLdR dRXL/M2
Φ. After Fiertz

transformation, this operator becomes κ23 XLγµXL dRγµdR/M2
Φ. First of all, one can see that the dark

parity is broken and the dark pion can decay into SM quarks from the operator, iκ23 fπd
md πd dγ5d/M2

Φ,

using the dark chiral Lagrangian. For ΛdQCD > ΛQCD, the decay width of πd is estimated to be

κ43 f
2
πd
m2

dmπd
/(32πM4

Φ). For MΦ/κ3 ∼ 1 TeV, the dark pion is generically a stable particle at colliders

unless πd is heavy enough to decay into strange quarks. When the dark pion mass is below 3mπ, it

can only decay into a pair of photons at loop level or high-multiplicity final state via off-shell pions

and has an even longer lifetime.

The effective operator, κ23 XLγµXL dRγµdR/M2
Φ, can also be used to induce both dark matter-

nucleon spin-independent and spin-dependent scattering. For the dominant spin-independent scatter-

ing, the matrix element for scattering off a proton or neutron is given by [37] Mp,n = κ23/(4M
2
Φ)J

0
XJ0

p,n,

where J0
X = ⟨D|Xγ0X|D⟩ ≈ 3 and J0

p,n = ⟨p, n|dγ0d|p, n⟩ ≈ 1, 2. Then the spin-independent dark

baryon-neutron cross section is calculated to be

σSI
D−n =

22 32 κ43 µ
2
D−n

16πM4
Φ

=

(

1 TeV

MΦ/κ3

)4

× 3× 10−40 cm2 , (12)

where µD−n is the reduced mass of the dark baryon and ordinary neutron system. For mD ≈ 3.5 GeV

and MΦ/κ3 = 1 TeV, the cross section is close but below the current limits from light dark matter

searches [38,39].

In our model, we have additional particles charged under the SM QCD with masses at the de-

coupling scale M . The lightest additional QCD charged state Φ can be produced in pairs at the

LHC. Each Φ can decay into one quark and one dark quark, Φ → Xd̄R. After hadronization, the

ordinary quark will behave as a jet at colliders. The story for the dark quark is slightly different. After

hadronization in the dark sector, both dark baryons and dark mesons can exist in the final state. If

dark pions are stable particles at colliders, the total dark jet behaves as missing energy. The final

signal is two QCD jets plus missing transverse energy, well covered by the current SUSY search [40].

On the other hand, if the dark pions decay into SM quarks inside detectors, only a fraction of the

2The Yukawa coupling of dark quarks to the Higgs boson is ∼ m2
πd

f2
πd

/(vEW Λ3
dQCD), which is suppressed by at least

a power of f2
πd

/Λ2
dQCD ∼ 1/(4π)2 and will not affect the SM Higgs properties in a significant way.

9
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served in Detector 3 of Tower 5. These detectors were
near the middle of their respective tower stacks. Fig. 2
illustrates the distribution of events in and near the sig-
nal region of the WIMP-search data set before (top) and
after (bottom) application of the phonon timing criterion.
Fig. 3 shows an alternate view of these events, expressed
in “normalized” versions of yield and timing that are
transformed so that the WIMP acceptance regions of all
detectors coincide.

After unblinding, extensive checks of the three candi-
date events revealed no data quality or analysis issues
that would invalidate them as WIMP candidates. The
signal-to-noise on the ionization channel for the three
events (ordered in increasing recoil energy) was measured
to be 6.7�, 4.9�, and 5.1�. A study on possible leakage
into the signal band due to 206Pb recoils from 210Po de-
cays found the expected leakage to be negligible with
an upper limit of < 0.08 events at the 90% confidence
level. The energy distribution of the 206Pb background
was constructed using events in which a coincident ↵ par-
ticle was detected in a detector adjacent to one of the 8
Si detectors used in this analysis.

This result constrains the available parameter space
of WIMP dark matter models. We compute upper lim-
its on the WIMP-nucleon scattering cross section using
Yellin’s optimum interval method [25]. We assume a
WIMP mass density of 0.3 GeV/c2/cm3, a most probable
WIMP velocity with respect to the galaxy of 220 km/s,
a mean circular velocity of Earth with respect to the
galactic center of 232 km/s, a galactic escape velocity of
544 km/s [26], and the Helm form factor [27]. Fig. 4
shows the derived upper limits on the spin-independent
WIMP-nucleon scattering cross section at the 90% con-
fidence level (C.L.) from this analysis and a selection of
other recent results. The present data set an upper limit
of 2.4⇥ 10�41 cm2 for a WIMP of mass 10 GeV/c2. We
are completing the calibration of the nuclear recoil energy
scale using the Si-neutron elastic scattering resonant fea-
ture in the 252Cf exposures. This study indicates that our
reconstructed energy may be 10% lower than the true re-
coil energy, which would weaken the upper limit slightly.
Below 20 GeV/c2 the change is well approximated by
shifting the limits parallel to the mass axis by ⇠ 7%. In
addition, neutron calibration multiple scattering e↵ects
improve the response to WIMPs by shifting the upper
limit down parallel to the cross-section axis by ⇠ 5%.

A model of our known backgrounds, including both
energy and expected rate distributions, was constructed
for each detector and experimental run for each of the
three backgrounds considered: surface electron recoils,
neutron backgrounds, and 206Pb recoils. Simulations of
our background model yield a 5.4% probability of a sta-
tistical fluctuation producing three or more events in our
signal region.

This model of our known backgrounds was used to in-
vestigate the data in the context of a WIMP+background
hypothesis. We performed a profile likelihood analysis,
including the event energies, in which the background
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FIG. 4. Experimental upper limits (90% confidence level) for
the WIMP-nucleon spin-independent cross section as a func-
tion of WIMP mass. We show the limit obtained from the
exposure analyzed in this work alone (blue dotted line), and
combined with the CDMS II Si data set reported in [23, 28]
(blue solid line). Also shown are limits from the CDMS
II Ge standard [17] and low-threshold [29] analysis (dark
and light dashed red), EDELWEISS low-threshold [30] (long-
dashed orange), XENON10 S2-only [31] (dash-dotted green),
and XENON100 [32] (long-dash-dotted green). The filled re-
gions identify possible signal regions associated with data
from CoGeNT [33] (dashed yellow, 90% C.L.), DAMA/LIBRA
[10, 34] (dotted tan, 99.7% C.L.), and CRESST [12, 35] (dash-
dotted pink, 95.45% C.L.) experiments. 68% and 90% C.L.
contours for a possible signal from these data are shown in
light blue. The blue dot shows the maximum likelihood point
at (8.6 GeV/c2, 1.9⇥ 10�41 cm2).

rates were treated as nuisance parameters and the WIMP
mass and cross section were the parameters of interest.
We profiled over probability distribution functions of the
rate for each of our known backgrounds. The highest like-
lihood was found for a WIMP mass of 8.6 GeV/c2 and
a WIMP-nucleon cross section of 1.9⇥10�41 cm2. The
goodness-of-fit test of this WIMP+background hypoth-
esis results in a p-value of 68%, while the background-
only hypothesis fits the data with a p-value of 4.5%.
A profile likelihood ratio test finds that the data favor
the WIMP+background hypothesis over our background-
only hypothesis with a p-value of 0.19%. Though this
result favors a WIMP interpretation over the known-
background-only hypothesis, we do not believe this result
rises to the level of a discovery.

Fig. 4 shows the resulting best-fit region from this
analysis (68% and 90% confidence level contours) on
the WIMP-nucleon cross-section vs. WIMP mass plane.
The 90% C.L. exclusion regions from CDMS II’s Ge
and Si analyses and EDELWEISS low-threshold analy-
sis cover part of this best-fit region, but the results are
overall statistically compatible. There is much stronger
tension with the upper limits from the XENON10 and

Dark Matter Phenomenology
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Collider Phenomenology
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Conclusions

★ For asymmetry DM models, infrared fixed points 
can relate the QCD and dark QCD confinement 
scales and explain why dark baryon masses are at 
the same scale with the proton mass

★ Thermal dark neutron points to the dark QCD 
scale to be ~ 100 TeV. The direct detection depends 
on the explicit models of how to relate the dark 
sector to our sector

★ More inputs from Lattice are required to calculate 
coefficients of order of unit
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